Cross-like constructions and refinements

Daniel Soukup

Daniel Soukup (ELTE) Cross-like constructions and refinements Winterschool 2010 1 / 16

- \bullet Sorgenfrey line: convergence \leftrightarrow convergence from the right,
- \bullet generalize this: convergence \leftrightarrow convergence from given directions.
- What topologies capture this property?

- the cross-topology on \mathbb{R}^2 ,
- the radiolar-topology on \mathbb{R}^2 ,
- the cross-topology on $X \times Y$.

- \bullet Sorgenfrey line: convergence \leftrightarrow convergence from the right,
- generalize this: convergence \leftrightarrow convergence from given directions.
- What topologies capture this property?

- the cross-topology on \mathbb{R}^2 ,
- the radiolar-topology on \mathbb{R}^2 ,
- the cross-topology on $X \times Y$.

- \bullet Sorgenfrey line: convergence \leftrightarrow convergence from the right,
- \bullet generalize this: convergence \leftrightarrow convergence from given directions.
- What topologies capture this property?

- the cross-topology on \mathbb{R}^2 ,
- the radiolar-topology on \mathbb{R}^2 ,
- the cross-topology on $X \times Y$.

- Sorgenfrey line: convergence \leftrightarrow convergence from the right,
- \bullet generalize this: convergence \leftrightarrow convergence from given directions.
- What topologies capture this property?

- the cross-topology on \mathbb{R}^2 ,
- the radiolar-topology on \mathbb{R}^2 ,
- the cross-topology on $X \times Y$.

- Sorgenfrey line: convergence \leftrightarrow convergence from the right,
- generalize this: convergence \leftrightarrow convergence from given directions.
- What topologies capture this property?

- the cross-topology on \mathbb{R}^2 ,
- the radiolar-topology on \mathbb{R}^2 ,
- the cross-topology on $X \times Y$.

- Sorgenfrey line: convergence \leftrightarrow convergence from the right,
- generalize this: convergence \leftrightarrow convergence from given directions.
- What topologies capture this property?

- the cross-topology on \mathbb{R}^2 ,
- the radiolar-topology on \mathbb{R}^2 ,
- the cross-topology on $X \times Y$.

- Sorgenfrey line: convergence \leftrightarrow convergence from the right,
- generalize this: convergence \leftrightarrow convergence from given directions.
- What topologies capture this property?

- the cross-topology on \mathbb{R}^2 ,
- the radiolar-topology on \mathbb{R}^2 ,
- the cross-topology on $X \times Y$.

- Sorgenfrey line: convergence \leftrightarrow convergence from the right,
- generalize this: convergence \leftrightarrow convergence from given directions.
- What topologies capture this property?

- the cross-topology on \mathbb{R}^2 ,
- the radiolar-topology on \mathbb{R}^2 ,
- the cross-topology on $X \times Y$.

- Sorgenfrey line: convergence \leftrightarrow convergence from the right,
- generalize this: convergence \leftrightarrow convergence from given directions.
- What topologies capture this property?

- the cross-topology on \mathbb{R}^2 ,
- the radiolar-topology on \mathbb{R}^2 ,
- the cross-topology on $X \times Y$.

- separation axioms: the usual failure of T_3 ,
- density, covering properties,
- connectivity.
- The question of regularity:
 - regularizations, hard-to-see topologies (Knight-Moran-Pym (1968)),
 - conditions which ensure regularity, normality for the cross-topology on $X \times Y$. (Hart-Kunen (2002))

- separation axioms: the usual failure of T_3 ,
- density, covering properties,
- connectivity.
- The question of regularity:
 - regularizations, hard-to-see topologies (Knight-Moran-Pym (1968)),
 - conditions which ensure regularity, normality for the cross-topology on $X \times Y$. (Hart-Kunen (2002))

- separation axioms: the usual failure of T_3 ,
- density, covering properties,
- connectivity.
- The question of regularity:
 - regularizations, hard-to-see topologies (Knight-Moran-Pym (1968)),
 - conditions which ensure regularity, normality for the cross-topology on $X \times Y$. (Hart-Kunen (2002))

- separation axioms: the usual failure of T_3 ,
- density, covering properties,
- connectivity.
- The question of regularity:
 - regularizations, hard-to-see topologies (Knight-Moran-Pym (1968)),
 - conditions which ensure regularity, normality for the cross-topology on $X \times Y$. (Hart-Kunen (2002))

- separation axioms: the usual failure of T_3 ,
- density, covering properties,
- connectivity.

The question of regularity:

- regularizations, hard-to-see topologies (Knight-Moran-Pym (1968)),
- conditions which ensure regularity, normality for the cross-topology on $X \times Y$. (Hart-Kunen (2002))

- separation axioms: the usual failure of T_3 ,
- density, covering properties,
- connectivity.
- The question of regularity:
 - regularizations, hard-to-see topologies (Knight-Moran-Pym (1968)),
 - conditions which ensure regularity, normality for the cross-topology on $X \times Y$. (Hart-Kunen (2002))

- separation axioms: the usual failure of T_3 ,
- density, covering properties,
- connectivity.
- The question of regularity:
 - regularizations, hard-to-see topologies (Knight-Moran-Pym (1968)),
 - conditions which ensure regularity, normality for the cross-topology on $X \times Y$. (Hart-Kunen (2002))

- separation axioms: the usual failure of T_3 ,
- density, covering properties,
- connectivity.
- The question of regularity:
 - regularizations, hard-to-see topologies (Knight-Moran-Pym (1968)),
 - conditions which ensure regularity, normality for the cross-topology on $X \times Y$. (Hart-Kunen (2002))

- take a space (X, τ) ,
- take any family $\mathcal E$ of subsets of X,
- let $\tau_{\mathcal{E}} = \{ U \subseteq X : U \cap E \text{ is relatively open in } E \text{ for all } E \in \mathcal{E} \}.$

Let $S \subseteq S^1$ be a set of unit vectors, usually called *directions*.

Definition

- take a space (X, τ) ,
- take any family \mathcal{E} of subsets of X,
- let $\tau_{\mathcal{E}} = \{ U \subseteq X : U \cap E \text{ is relatively open in } E \text{ for all } E \in \mathcal{E} \}.$

Let $S \subseteq S^1$ be a set of unit vectors, usually called *directions*.

Definition

• take a space (X, au),

• take any family \mathcal{E} of subsets of X,

• let $\tau_{\mathcal{E}} = \{ U \subseteq X : U \cap E \text{ is relatively open in } E \text{ for all } E \in \mathcal{E} \}.$

Let $S \subseteq S^1$ be a set of unit vectors, usually called *directions*.

Definition

- take a space (X, τ) ,
- take any family \mathcal{E} of subsets of X,

• let $\tau_{\mathcal{E}} = \{ U \subseteq X : U \cap E \text{ is relatively open in } E \text{ for all } E \in \mathcal{E} \}.$

Let $S \subseteq S^1$ be a set of unit vectors, usually called *directions*.

Definition

- take a space (X, τ) ,
- take any family $\mathcal E$ of subsets of X,
- let $\tau_{\mathcal{E}} = \{ U \subseteq X : U \cap E \text{ is relatively open in } E \text{ for all } E \in \mathcal{E} \}.$

Let $S \subseteq S^1$ be a set of unit vectors, usually called *directions*.

Definition

- take a space (X, au),
- take any family $\mathcal E$ of subsets of X,
- let $\tau_{\mathcal{E}} = \{ U \subseteq X : U \cap E \text{ is relatively open in } E \text{ for all } E \in \mathcal{E} \}.$

Let $S \subseteq S^1$ be a set of unit vectors, usually called *directions*.

Definition

- take a space (X, au),
- take any family \mathcal{E} of subsets of X,
- let $\tau_{\mathcal{E}} = \{ U \subseteq X : U \cap E \text{ is relatively open in } E \text{ for all } E \in \mathcal{E} \}.$
- Let $S \subseteq S^1$ be a set of unit vectors, usually called *directions*.

Definition

- take a space (X, au),
- take any family $\mathcal E$ of subsets of X,
- let $\tau_{\mathcal{E}} = \{ U \subseteq X : U \cap E \text{ is relatively open in } E \text{ for all } E \in \mathcal{E} \}.$

Let $S \subseteq S^1$ be a set of unit vectors, usually called *directions*.

Definition

- take a space (X, au),
- take any family $\mathcal E$ of subsets of X,
- let $\tau_{\mathcal{E}} = \{ U \subseteq X : U \cap E \text{ is relatively open in } E \text{ for all } E \in \mathcal{E} \}.$

Let $S \subseteq S^1$ be a set of unit vectors, usually called *directions*.

Definition

- take a space (X, au),
- take any family $\mathcal E$ of subsets of X,
- let $\tau_{\mathcal{E}} = \{ U \subseteq X : U \cap E \text{ is relatively open in } E \text{ for all } E \in \mathcal{E} \}.$

Let $S \subseteq S^1$ be a set of unit vectors, usually called *directions*.

Definition

- cross topology,
- for $S = S^1$ the radiolar topology,
- for $S = \{s\} \mathcal{R}(S)$ is the disjoint union of c-many Sorgenfrey lines,
- for $S = \{s, -s\} \mathcal{R}(S)$ is the disjoint union of \mathfrak{c} -many Euclidean lines.

- What is the convergence we have?
- The $\mathcal{R}(S)$ spaces are Hausdorff and separable.
- There always exists a closed discrete subset in $\mathcal{R}(S)$ of cardinality c, hence these spaces are non normal, non Lindelöf, non hereditaraly separable.

Basics

Two special and two trivial cases:

- cross topology,
- for $S = S^1$ the radiolar topology,
- for $S = \{s\} \mathcal{R}(S)$ is the disjoint union of \mathfrak{c} -many Sorgenfrey lines,
- for $S = \{s, -s\} \mathcal{R}(S)$ is the disjoint union of \mathfrak{c} -many Euclidean lines.

- What is the convergence we have?
- The $\mathcal{R}(S)$ spaces are Hausdorff and separable.
- There always exists a closed discrete subset in R(S) of cardinality
 c, hence these spaces are non normal, non Lindelöf, non hereditaraly separable.

cross topology,

- for $S = S^1$ the radiolar topology,
- for $S = \{s\} \mathcal{R}(S)$ is the disjoint union of c-many Sorgenfrey lines,
- for $S = \{s, -s\} \mathcal{R}(S)$ is the disjoint union of \mathfrak{c} -many Euclidean lines.

- What is the convergence we have?
- The $\mathcal{R}(S)$ spaces are Hausdorff and separable.
- There always exists a closed discrete subset in R(S) of cardinality
 c, hence these spaces are non normal, non Lindelöf, non hereditaraly separable.

- cross topology,
- for $S=S^1$ the radiolar topology,
- for $S = \{s\} \mathcal{R}(S)$ is the disjoint union of c-many Sorgenfrey lines,
- for $S = \{s, -s\} \mathcal{R}(S)$ is the disjoint union of c-many Euclidean lines.

- What is the convergence we have?
- The $\mathcal{R}(S)$ spaces are Hausdorff and separable.
- There always exists a closed discrete subset in $\mathcal{R}(S)$ of cardinality c, hence these spaces are non normal, non Lindelöf, non hereditaraly separable.

- cross topology,
- for $S=S^1$ the radiolar topology,
- for $S = \{s\} \mathcal{R}(S)$ is the disjoint union of c-many Sorgenfrey lines,
- for $S = \{s, -s\} \mathcal{R}(S)$ is the disjoint union of \mathfrak{c} -many Euclidean lines.

- What is the convergence we have?
- The $\mathcal{R}(S)$ spaces are Hausdorff and separable.
- There always exists a closed discrete subset in R(S) of cardinality
 c, hence these spaces are non normal, non Lindelöf, non hereditaraly separable.

- cross topology,
- for $S=S^1$ the radiolar topology,
- for $S = \{s\} \mathcal{R}(S)$ is the disjoint union of c-many Sorgenfrey lines,
- for $S = \{s, -s\} \mathcal{R}(S)$ is the disjoint union of \mathfrak{c} -many Euclidean lines.

- What is the convergence we have?
- The $\mathcal{R}(S)$ spaces are Hausdorff and separable.
- There always exists a closed discrete subset in R(S) of cardinality
 c, hence these spaces are non normal, non Lindelöf, non hereditaraly separable.

- cross topology,
- for $S=S^1$ the radiolar topology,
- for $S = \{s\} \mathcal{R}(S)$ is the disjoint union of c-many Sorgenfrey lines,
- for $S = \{s, -s\} \mathcal{R}(S)$ is the disjoint union of \mathfrak{c} -many Euclidean lines.

- What is the convergence we have?
- The $\mathcal{R}(S)$ spaces are Hausdorff and separable.
- There always exists a closed discrete subset in R(S) of cardinality
 c, hence these spaces are non normal, non Lindelöf, non hereditaraly separable.

- cross topology,
- for $S=S^1$ the radiolar topology,
- for $S = \{s\} \mathcal{R}(S)$ is the disjoint union of c-many Sorgenfrey lines,
- for $S = \{s, -s\} \mathcal{R}(S)$ is the disjoint union of \mathfrak{c} -many Euclidean lines.

- What is the convergence we have?
- The $\mathcal{R}(S)$ spaces are Hausdorff and separable.
- There always exists a closed discrete subset in $\mathcal{R}(S)$ of cardinality c, hence these spaces are non normal, non Lindelöf, non hereditaraly separable.

Two special and two trivial cases:

- cross topology,
- for $S=S^1$ the radiolar topology,
- for $S = \{s\} \mathcal{R}(S)$ is the disjoint union of c-many Sorgenfrey lines,
- for $S = \{s, -s\}$ $\mathcal{R}(S)$ is the disjoint union of \mathfrak{c} -many Euclidean lines.

Simple properties for a nontrivial $\mathcal{R}(S)$ space:

- What is the convergence we have?
- The $\mathcal{R}(S)$ spaces are Hausdorff and separable.
- There always exists a closed discrete subset in $\mathcal{R}(S)$ of cardinality c, hence these spaces are non normal, non Lindelöf, non hereditaraly separable.

Two special and two trivial cases:

- cross topology,
- for $S=S^1$ the radiolar topology,
- for $S = \{s\} \mathcal{R}(S)$ is the disjoint union of c-many Sorgenfrey lines,
- for $S = \{s, -s\} \mathcal{R}(S)$ is the disjoint union of \mathfrak{c} -many Euclidean lines.

Simple properties for a nontrivial $\mathcal{R}(S)$ space:

- What is the convergence we have?
- The $\mathcal{R}(S)$ spaces are Hausdorff and separable.
- There always exists a closed discrete subset in $\mathcal{R}(S)$ of cardinality c, hence these spaces are non normal, non Lindelöf, non hereditaraly separable.

Two special and two trivial cases:

- cross topology,
- for $S=S^1$ the radiolar topology,
- for $S = \{s\} \mathcal{R}(S)$ is the disjoint union of c-many Sorgenfrey lines,
- for $S = \{s, -s\} \mathcal{R}(S)$ is the disjoint union of \mathfrak{c} -many Euclidean lines.

Simple properties for a nontrivial $\mathcal{R}(S)$ space:

- What is the convergence we have?
- The $\mathcal{R}(S)$ spaces are Hausdorff and separable.
- There always exists a closed discrete subset in $\mathcal{R}(S)$ of cardinality c, hence these spaces are non normal, non Lindelöf, non hereditaraly separable.

Theorem

For nontrivial $S\subseteq S^1$ we have $\chi(\mathcal{R}(S))=2^{\mathfrak{c}}.$

Thus $\mathcal{R}(S)$ is non regular since for any regular space $X\colon w(X)\leq 2^{d(X)}$.

Theorem

For nontrivial $S\subseteq S^1$ we have $\chi(\mathcal{R}(S))=2^{\mathfrak{c}}.$

Thus $\mathcal{R}(S)$ is non regular since for any regular space $X\colon w(X)\leq 2^{d(X)}$.

Theorem

For nontrivial $S \subseteq S^1$ we have $\chi(\mathcal{R}(S)) = 2^{\mathfrak{c}}$.

Thus $\mathcal{R}(S)$ is non regular since for any regular space $X\colon w(X)\leq 2^{d(X)}$.

Theorem

For nontrivial $S \subseteq S^1$ we have $\chi(\mathcal{R}(S)) = 2^{\mathfrak{c}}$.

Thus $\mathcal{R}(S)$ is non regular since for any regular space X: $w(X) \leq 2^{d(X)}$.

A set $S \subseteq S^1$ is splayed iff it cannot be covered by a closed half circle, S contains a full direction is there is a $s \in S^1$ such that $\{s, -s\} \subseteq S$.

- R(S) is connected iff S is splayed.
- There exists an uncountable compact subspace in R(S) iff there is a full direction in S.
- R(S) is pathwise connected iff there are at least two full directions in S.

A set $S \subseteq S^1$ is splayed iff it cannot be covered by a closed half circle, S contains a full direction is there is a $s \in S^1$ such that $\{s, -s\} \subseteq S$.

- R(S) is connected iff S is splayed.
- There exists an uncountable compact subspace in R(S) iff there is a full direction in S.
- R(S) is pathwise connected iff there are at least two full directions in S.

A set $S \subseteq S^1$ is splayed iff it cannot be covered by a closed half circle, S contains a full direction is there is a $s \in S^1$ such that $\{s, -s\} \subseteq S$.

- R(S) is connected iff S is splayed.
- There exists an uncountable compact subspace in R(S) iff there is a full direction in S.
- R(S) is pathwise connected iff there are at least two full directions in S.

A set $S \subseteq S^1$ is splayed iff it cannot be covered by a closed half circle, S contains a full direction is there is a $s \in S^1$ such that $\{s, -s\} \subseteq S$.

Fheorem

- R(S) is connected iff S is splayed.
- There exists an uncountable compact subspace in R(S) iff there is a full direction in S.
- R(S) is pathwise connected iff there are at least two full directions in S.

A set $S \subseteq S^1$ is splayed iff it cannot be covered by a closed half circle, S contains a full direction is there is a $s \in S^1$ such that $\{s, -s\} \subseteq S$.

- $\mathcal{R}(S)$ is connected iff S is splayed.
- There exists an uncountable compact subspace in $\mathcal{R}(S)$ iff there is a full direction in S.
- $\mathcal{R}(S)$ is pathwise connected iff there are at least two full directions in S.

A set $S \subseteq S^1$ is splayed iff it cannot be covered by a closed half circle, S contains a full direction is there is a $s \in S^1$ such that $\{s, -s\} \subseteq S$.

- $\mathcal{R}(S)$ is connected iff S is splayed.
- There exists an uncountable compact subspace in $\mathcal{R}(S)$ iff there is a full direction in S.
- R(S) is pathwise connected iff there are at least two full directions in S.

A set $S \subseteq S^1$ is splayed iff it cannot be covered by a closed half circle, S contains a full direction is there is a $s \in S^1$ such that $\{s, -s\} \subseteq S$.

- $\mathcal{R}(S)$ is connected iff S is splayed.
- There exists an uncountable compact subspace in $\mathcal{R}(S)$ iff there is a full direction in S.
- R(S) is pathwise connected iff there are at least two full directions in S.

A set $S \subseteq S^1$ is splayed iff it cannot be covered by a closed half circle, S contains a full direction is there is a $s \in S^1$ such that $\{s, -s\} \subseteq S$.

- $\mathcal{R}(S)$ is connected iff S is splayed.
- There exists an uncountable compact subspace in $\mathcal{R}(S)$ iff there is a full direction in S.
- $\mathcal{R}(S)$ is pathwise connected iff there are at least two full directions in S.

Proposition

For **symmetric and non-symmetric** S sets the corresponding $\mathcal{R}(S)$ topologies are **non homeomorphic**.

Definition

A space X is symmetrizable iff there is a symmetric $d : X \times X \to \mathbb{R}$ on X:

- for all $x, y \in X$: $d(x, y) = d(y, x) \ge 0$,

such that $U \subseteq X$ is open iff for any $x \in U$ there is a $\epsilon > 0$ such that $B(x, \epsilon) = \{y \in X : d(x, y) < \epsilon\} \subseteq U$.

Proposition

The space $\mathcal{R}(S)$ is symmetrizable \Leftrightarrow S is finite and symmetric.

Daniel Soukup (ELTE)

Cross-like constructions and refinements

Proposition

For symmetric and non-symmetric S sets the corresponding $\mathcal{R}(S)$ topologies are non homeomorphic.

Definition

A space X is symmetrizable iff there is a symmetric $d : X \times X \to \mathbb{R}$ on X:

- for all $x, y \in X$: $d(x, y) = d(y, x) \ge 0$,

such that $U \subseteq X$ is open iff for any $x \in U$ there is a $\epsilon > 0$ such that $B(x, \epsilon) = \{y \in X : d(x, y) < \epsilon\} \subseteq U$.

Proposition

The space $\mathcal{R}(S)$ is symmetrizable \Leftrightarrow S is finite and symmetric.

Danie Soukup (ELTE)

8 / 16

Proposition

For symmetric and non-symmetric S sets the corresponding $\mathcal{R}(S)$ topologies are non homeomorphic.

Definition

A space X is symmetrizable iff there is a symmetric $d : X \times X \to \mathbb{R}$ on X:

• for all $x, y \in X : d(x, y) = d(y, x) \ge 0$,

 $d(x,y) = 0 \Leftrightarrow x = y,$

such that $U \subseteq X$ is open iff for any $x \in U$ there is a $\epsilon > 0$ such that $B(x, \epsilon) = \{y \in X : d(x, y) < \epsilon\} \subseteq U.$

Proposition

The space $\mathcal{R}(S)$ is symmetrizable $\Leftrightarrow S$ is finite and symmetric.

Daniel Soukup (ELTE)

Cross-like constructions and refinements

8 / 16

Proposition

For symmetric and non-symmetric S sets the corresponding $\mathcal{R}(S)$ topologies are non homeomorphic.

Definition

A space X is symmetrizable iff there is a symmetric $d : X \times X \to \mathbb{R}$ on X:

• for all
$$x, y \in X$$
 : $d(x, y) = d(y, x) \ge 0$,

 $d(x,y) = 0 \Leftrightarrow x = y,$

such that $U \subseteq X$ is open iff for any $x \in U$ there is a $\epsilon > 0$ such that $B(x, \epsilon) = \{y \in X : d(x, y) < \epsilon\} \subseteq U.$

Proposition

The space $\mathcal{R}(S)$ is symmetrizable \Leftrightarrow S is finite and symmetric.

Daniel Soukup (ELTE)

Proposition

For symmetric and non-symmetric S sets the corresponding $\mathcal{R}(S)$ topologies are non homeomorphic.

Definition

A space X is symmetrizable iff there is a symmetric $d : X \times X \to \mathbb{R}$ on X:

• for all
$$x, y \in X : d(x, y) = d(y, x) \ge 0$$
,

$$d(x,y) = 0 \Leftrightarrow x = y,$$

such that $U \subseteq X$ is open iff for any $x \in U$ there is a $\epsilon > 0$ such that $B(x, \epsilon) = \{y \in X : d(x, y) < \epsilon\} \subseteq U$.

Proposition

The space $\mathcal{R}(S)$ is symmetrizable \Leftrightarrow S is finite and symmetric.

Daniel Soukup (ELTE)

Proposition

For symmetric and non-symmetric S sets the corresponding $\mathcal{R}(S)$ topologies are non homeomorphic.

Definition

A space X is symmetrizable iff there is a symmetric $d : X \times X \to \mathbb{R}$ on X:

• for all
$$x,y\in X$$
 : $d(x,y)=d(y,x)\geq 0$,

$$d(x,y) = 0 \Leftrightarrow x = y,$$

such that $U \subseteq X$ is open iff for any $x \in U$ there is a $\epsilon > 0$ such that $B(x, \epsilon) = \{y \in X : d(x, y) < \epsilon\} \subseteq U$.

Proposition

The space $\mathcal{R}(S)$ is symmetrizable \Leftrightarrow S is finite and symmetric.

Daniel Soukup (ELTE)

Proposition

For symmetric and non-symmetric S sets the corresponding $\mathcal{R}(S)$ topologies are non homeomorphic.

Definition

A space X is symmetrizable iff there is a symmetric $d : X \times X \to \mathbb{R}$ on X:

• for all
$$x, y \in X : d(x, y) = d(y, x) \ge 0$$
,

$$d(x,y) = 0 \Leftrightarrow x = y,$$

such that $U \subseteq X$ is open iff for any $x \in U$ there is a $\epsilon > 0$ such that $B(x, \epsilon) = \{y \in X : d(x, y) < \epsilon\} \subseteq U$.

Proposition

The space $\mathcal{R}(S)$ is symmetrizable $\Leftrightarrow S$ is finite and symmetric.

Properties depending on SWeak bases

Definition (Arhangelskii)

For a space (X, τ) and a point $x \in X$ a family of closed sets is a weak base at x iff

• $x \in \bigcap \mathcal{B}$

 for every x ∈ U ⊆ X the set U is open iff U \ {x} is open and there is a B ∈ B such that B ⊆ U.

Let the weak base character be $\chi_w(x, X) = \min\{|\mathcal{B}| : \mathcal{B} \text{ is a weak base at } x\}$ and $\chi_w(X) = \sup\{\chi_w(x, X) : x \in X\}.$

Proposition

For any $S \subseteq S^1$ we have $\chi_w(\mathcal{R}(S)) = \mathfrak{d}(|S|)$, where $\mathfrak{d}(\kappa) = \min\{|\mathcal{F}| : \mathcal{F} \subseteq \kappa_\omega \text{ is dominating }\}$.

Properties depending on SWeak bases

Definition (Arhangelskii)

For a space (X, τ) and a point $x \in X$ a family of closed sets is a weak base at x iff

• $x \in \bigcap \mathcal{B}$,

• for every $x \in U \subseteq X$ the set U is open iff $U \setminus \{x\}$ is open and there is a $B \in \mathcal{B}$ such that $B \subseteq U$.

Let the weak base character be $\chi_w(x, X) = \min\{|\mathcal{B}| : \mathcal{B} \text{ is a weak base at } x\}$ and $\chi_w(X) = \sup\{\chi_w(x, X) : x \in X\}.$

Proposition

For any $S \subseteq S^1$ we have $\chi_w(\mathcal{R}(S)) = \mathfrak{d}(|S|)$, where $\mathfrak{d}(\kappa) = \min\{|\mathcal{F}| : \mathcal{F} \subseteq \kappa_\omega \text{ is dominating }\}$.

Image: A matrix

Properties depending on SWeak bases

Definition (Arhangelskii)

For a space (X, τ) and a point $x \in X$ a family of closed sets is a weak base at x iff

• $x \in \bigcap \mathcal{B}$,

• for every $x \in U \subseteq X$ the set U is open iff $U \setminus \{x\}$ is open and there is a $B \in \mathcal{B}$ such that $B \subseteq U$.

Let the weak base character be $\chi_w(x, X) = \min\{|\mathcal{B}| : \mathcal{B} \text{ is a weak base at } x\}$ and $\chi_w(X) = \sup\{\chi_w(x, X) : x \in X\}.$

Proposition

For any $S \subseteq S^1$ we have $\chi_w(\mathcal{R}(S)) = \mathfrak{d}(|S|)$, where $\mathfrak{d}(\kappa) = \min\{|\mathcal{F}| : \mathcal{F} \subseteq \kappa_\omega \text{ is dominating }\}$.

Definition (Arhangelskii)

For a space (X, τ) and a point $x \in X$ a family of closed sets is a weak base at x iff

• $x \in \bigcap \mathcal{B}$,

• for every $x \in U \subseteq X$ the set U is open iff $U \setminus \{x\}$ is open and there is a $B \in \mathcal{B}$ such that $B \subseteq U$.

Let the weak base character be $\chi_w(x, X) = \min\{|\mathcal{B}| : \mathcal{B} \text{ is a weak base at } x\}$ and $\chi_w(X) = \sup\{\chi_w(x, X) : x \in X\}.$

Proposition

For any $S \subseteq S^1$ we have $\chi_w(\mathcal{R}(S)) = \mathfrak{d}(|S|)$, where $\mathfrak{d}(\kappa) = \min\{|\mathcal{F}| : \mathcal{F} \subseteq \kappa_\omega \text{ is dominating }\}$.

Definition (Arhangelskii)

For a space (X, τ) and a point $x \in X$ a family of closed sets is a weak base at x iff

• $x \in \bigcap \mathcal{B}$,

• for every $x \in U \subseteq X$ the set U is open iff $U \setminus \{x\}$ is open and there is a $B \in \mathcal{B}$ such that $B \subseteq U$.

Let the weak base character be $\chi_w(x, X) = \min\{|\mathcal{B}| : \mathcal{B} \text{ is a weak base at } x\}$ and $\chi_w(X) = \sup\{\chi_w(x, X) : x \in X\}.$

Proposition

For any $S \subseteq S^1$ we have $\chi_w(\mathcal{R}(S)) = \mathfrak{d}(|S|)$, where $\mathfrak{d}(\kappa) = \min\{|\mathcal{F}| : \mathcal{F} \subseteq \kappa_\omega \text{ is dominating }\}$.

Image: A matrix and a matrix

Definition (Arhangelskii)

For a space (X, τ) and a point $x \in X$ a family of closed sets is a weak base at x iff

• $x \in \bigcap \mathcal{B}$,

• for every $x \in U \subseteq X$ the set U is open iff $U \setminus \{x\}$ is open and there is a $B \in \mathcal{B}$ such that $B \subseteq U$.

Let the weak base character be $\chi_w(x, X) = \min\{|\mathcal{B}| : \mathcal{B} \text{ is a weak base at } x\}$ and $\chi_w(X) = \sup\{\chi_w(x, X) : x \in X\}.$

Proposition

For any $S \subseteq S^1$ we have $\chi_w(\mathcal{R}(S)) = \mathfrak{d}(|S|)$, where $\mathfrak{d}(\kappa) = \min\{|\mathcal{F}| : \mathcal{F} \subseteq \kappa_\omega \text{ is dominating }\}$.

イロト イ理ト イヨト イヨト

3

9 / 16

- the symmetry of S,
- the cardinality of the defining set S,
- for finite defining sets S the number of full directions.

Problem

- the symmetry of S,
- the cardinality of the defining set S,
- for finite defining sets S the number of full directions.

Problem

- the symmetry of S,
- the cardinality of the defining set S,
- for finite defining sets S the number of full directions.

Problem

- the symmetry of S,
- the cardinality of the defining set S,
- for finite defining sets S the number of full directions.

Problem

- the symmetry of S,
- the cardinality of the defining set S,
- for finite defining sets S the number of full directions.

Problem

- the symmetry of S,
- the cardinality of the defining set S,
- for finite defining sets S the number of full directions.

Problem

Defining the $\mathcal{B}(S)$ spaces A way of regularization

The butterfly-construction:

- Let (M, τ) be a metric space.
- (M, τ*) is a butterfly-space over (M, τ) if every point has a base B such that for all B ∈ B B \ {x} ∈ τ.

Definition

Fix a $S\subseteq S^1$, $x\in \mathbb{R}^2, r>0$. Let us use the following notion:

$$\mathbf{S}(x,\mathbf{r}) = \bigcup \{ [x, x + \mathbf{rs}) : s \in S \}.$$

Definition

The $\mathcal{B}(S)$ topology is defined as follows: an $U \subseteq \mathbb{R}^2$ is said to be $\mathcal{B}(S)$ -open iff for every point $x \in U$ there is a $x \in V \subseteq U$ such that $S(x,r) \subseteq V$ for some r > 0 and $V \setminus \{x\}$ is Euclidean open.

Daniel Soukup (ELTE) Cros

Cross-like constructions and refinements

Winterschool 2010

11 / 16

Defining the $\mathcal{B}(S)$ spaces A way of regularization

The butterfly-construction:

- Let (M, τ) be a metric space.
- (M, τ*) is a butterfly-space over (M, τ) if every point has a base B such that for all B ∈ B B \ {x} ∈ τ.

Definition

Fix a $S\subseteq S^1$, $x\in \mathbb{R}^2, r>0$. Let us use the following notion:

$$\mathbf{S}(x,\mathbf{r}) = \bigcup \{ [x, x + \mathbf{rs}) : s \in S \}.$$

Definition

The $\mathcal{B}(S)$ topology is defined as follows: an $U \subseteq \mathbb{R}^2$ is said to be $\mathcal{B}(S)$ -open iff for every point $x \in U$ there is a $x \in V \subseteq U$ such that $S(x,r) \subseteq V$ for some r > 0 and $V \setminus \{x\}$ is Euclidean open.

Daniel Soukup (ELTE) Cros

Cross-like constructions and refinements

The butterfly-construction:

- Let (M, τ) be a metric space.
- (M, τ*) is a butterfly-space over (M, τ) if every point has a base B such that for all B ∈ B B \ {x} ∈ τ.

Definition

Fix a $S\subseteq S^1$, $x\in\mathbb{R}^2,$ r>0. Let us use the following notion:

$$\mathbf{S}(x,\mathbf{r}) = \bigcup \{ [x, x + \mathbf{rs}) : s \in S \}.$$

Definition

The $\mathcal{B}(S)$ topology is defined as follows: an $U \subseteq \mathbb{R}^2$ is said to be $\mathcal{B}(S)$ -open iff for every point $x \in U$ there is a $x \in V \subseteq U$ such that $S(x,r) \subseteq V$ for some r > 0 and $V \setminus \{x\}$ is Euclidean open.

Daniel Soukup (ELTE) Cro

Cross-like constructions and refinements

Winterschool 2010

The butterfly-construction:

- Let (M, τ) be a metric space.
- (M, τ*) is a butterfly-space over (M, τ) if every point has a base B such that for all B ∈ B B \ {x} ∈ τ.

Definition

Fix a $S\subseteq S^1$, ${ imes}\in \mathbb{R}^2,$ ${ imes}>0$. Let us use the following notion:

$$\mathbf{S}(x,\mathbf{r}) = \bigcup \{ [x, x + \mathbf{rs}) : s \in S \}.$$

Definition

The $\mathcal{B}(S)$ topology is defined as follows: an $U \subseteq \mathbb{R}^2$ is said to be $\mathcal{B}(S)$ -open iff for every point $x \in U$ there is a $x \in V \subseteq U$ such that $S(x,r) \subseteq V$ for some r > 0 and $V \setminus \{x\}$ is Euclidean open.

Daniel Soukup (ELTE) Cros

Cross-like constructions and refinements

Winterschoo| 2010

The butterfly-construction:

- Let (M, τ) be a metric space.
- (M, τ*) is a butterfly-space over (M, τ) if every point has a base B such that for all B ∈ B B \ {x} ∈ τ.

Definition

Fix a $S \subseteq S^1$, $x \in \mathbb{R}^2$, r > 0. Let us use the following notion:

$$S(x,r) = \bigcup \{ [x, x + rs) : s \in S \}.$$

Definition

The $\mathcal{B}(S)$ topology is defined as follows: an $U \subseteq \mathbb{R}^2$ is said to be $\mathcal{B}(S)$ -open iff for every point $x \in U$ there is a $x \in V \subseteq U$ such that $S(x,r) \subseteq V$ for some r > 0 and $V \setminus \{x\}$ is Euclidean open.

Daniel Soukup (ELTE) Cross-like cons

Cross-like constructions and refinements

Winterschool 2010

The butterfly-construction:

- Let (M, τ) be a metric space.
- (M, τ*) is a butterfly-space over (M, τ) if every point has a base B such that for all B ∈ B B \ {x} ∈ τ.

Definition

Fix a $S \subseteq S^1$, $x \in \mathbb{R}^2$, r > 0. Let us use the following notion:

$$S(x,r) = \bigcup \{ [x, x + rs) : s \in S \}.$$

Definition

The $\mathcal{B}(S)$ topology is defined as follows: an $U \subseteq \mathbb{R}^2$ is said to be $\mathcal{B}(S)$ -open iff for every point $x \in U$ there is a $x \in V \subseteq U$ such that $S(x,r) \subseteq V$ for some r > 0 and $V \setminus \{x\}$ is Euclidean open.

Proposition

The $\mathcal{B}(S)$ spaces are **Tychonoff iff** $S \subseteq S^1$ **is closed**.

What happened to the character?

Proposition

For every nonempty closed $S \subsetneqq S^1$: $\chi(\mathcal{B}(S)) = \mathfrak{d}$.

Proposition

The $\mathcal{B}(S)$ spaces are **Tychonoff iff** $S \subseteq S^1$ **is closed**.

What happened to the character?

Proposition

For every nonempty closed $S \subsetneqq S^1$: $\chi(\mathcal{B}(S)) = \mathfrak{d}$.

Proposition

The $\mathcal{B}(S)$ spaces are **Tychonoff iff** $S \subseteq S^1$ **is closed**.

What happened to the character?

Proposition

For every nonempty closed $S \subsetneqq S^1$: $\chi(\mathcal{B}(S)) = \mathfrak{d}$.

Proposition

The $\mathcal{B}(S)$ spaces are **Tychonoff iff** $S \subseteq S^1$ **is closed**.

What happened to the character?

Proposition

For every nonempty closed $S \subsetneqq S^1$: $\chi(\mathcal{B}(S)) = \mathfrak{d}$.

Proposition

The $\mathcal{B}(S)$ spaces are **Tychonoff iff** $S \subseteq S^1$ **is closed**.

What happened to the character?

Proposition

For every nonempty closed $S \subsetneq S^1$: $\chi(\mathcal{B}(S)) = \mathfrak{d}$.

What happened to the convergence?

Proposition

The $\mathcal{B}(S)$ spaces are **Tychonoff iff** $S \subseteq S^1$ **is closed**.

What happened to the character?

Proposition

For every nonempty closed $S \subsetneq S^1$: $\chi(\mathcal{B}(S)) = \mathfrak{d}$.

Definition

For an $S \subseteq S^1$ there is no missing full direction in S iff $x \notin S \Rightarrow -x \in S$.

Proposition

Suppose that there is no missing full direction in S. Then for every open set G in $\mathcal{B}(S)$, G and its Euclidean interior can only differ in \aleph_0 many points.

Definition

For an $S \subseteq S^1$ there is no missing full direction in S iff $x \notin S \Rightarrow -x \in S$.

Proposition

Suppose that there is no missing full direction in S. Then for every open set G in $\mathcal{B}(S)$, G and its Euclidean interior can only differ in \aleph_0 many points.

Definition

For an $S \subseteq S^1$ there is no missing full direction in S iff $x \notin S \Rightarrow -x \in S$.

Proposition

Suppose that there is no missing full direction in S. Then for every open set G in $\mathcal{B}(S)$, G and its Euclidean interior can only differ in \aleph_0 many points.

Definition

For an $S \subseteq S^1$ there is no missing full direction in S iff $x \notin S \Rightarrow -x \in S$.

Proposition

Suppose that there is no missing full direction in S. Then for every open set G in $\mathcal{B}(S)$, G and its Euclidean interior can only differ in \aleph_0 many points.

Definition

For an $S \subseteq S^1$ there is no missing full direction in S iff $x \notin S \Rightarrow -x \in S$.

Proposition

Suppose that there is no missing full direction in S. Then for every open set G in $\mathcal{B}(S)$, G and its Euclidean interior can only differ in \aleph_0 many points.

Theorem

For the space $\mathcal{B}(S)$ the following are **equivalent**:

- there is no missing full direction is S,
- B(S) is hereditarily Lindelöf,
- $\mathcal{B}(S)$ is hereditarily separable,
- $\mathcal{B}(S)$ is normal.

Theorem

For the space $\mathcal{B}(S)$ the following are **equivalent**:

- there is no missing full direction is S,
- B(S) is hereditarily Lindelöf,
- $\mathcal{B}(S)$ is hereditarily separable,
- $\mathcal{B}(S)$ is normal.

Theorem

For the space $\mathcal{B}(S)$ the following are **equivalent**:

- there is no missing full direction is S,
- $\mathcal{B}(S)$ is hereditarily Lindelöf,
- $\mathcal{B}(S)$ is hereditarily separable,
- $\mathcal{B}(S)$ is **normal**.

Theorem

For the space $\mathcal{B}(S)$ the following are **equivalent**:

- there is no missing full direction is S,
- $\mathcal{B}(S)$ is hereditarily Lindelöf,
- $\mathcal{B}(S)$ is hereditarily separable,
- $\mathcal{B}(S)$ is normal.

Theorem

For the space $\mathcal{B}(S)$ the following are **equivalent**:

- there is no missing full direction is S,
- $\mathcal{B}(S)$ is hereditarily Lindelöf,
- $\mathcal{B}(S)$ is hereditarily separable,
- $\mathcal{B}(S)$ is **normal**.

Theorem

For the space $\mathcal{B}(S)$ the following are **equivalent**:

- there is no missing full direction is S,
- $\mathcal{B}(S)$ is hereditarily Lindelöf,
- $\mathcal{B}(S)$ is hereditarily separable,
- $\mathcal{B}(S)$ is **normal**.

Theorem

For the space $\mathcal{B}(S)$ the following are **equivalent**:

- there is no missing full direction is S,
- $\mathcal{B}(S)$ is hereditarily Lindelöf,
- $\mathcal{B}(S)$ is hereditarily separable,
- $\mathcal{B}(S)$ is **normal**.

How one can differentiate $\mathcal{B}(S)$ topologies?

Proposition

If $S, T \subseteq S^1$ are closed, splayed and have different finite number of connected components then $\mathcal{B}(S)$ and $\mathcal{B}(T)$ are not homeomorphic.

Problem

How one can differentiate $\mathcal{B}(S)$ topologies?

Proposition

If $S, T \subseteq S^1$ are closed, splayed and have different finite number of connected components then $\mathcal{B}(S)$ and $\mathcal{B}(T)$ are not homeomorphic.

Problem

How one can differentiate $\mathcal{B}(S)$ topologies?

Proposition

If $S, T \subseteq S^1$ are closed, splayed and have different finite number of connected components then $\mathcal{B}(S)$ and $\mathcal{B}(T)$ are not homeomorphic.

Problem

How one can differentiate $\mathcal{B}(S)$ topologies?

Proposition

If $S, T \subseteq S^1$ are closed, splayed and have different finite number of connected components then $\mathcal{B}(S)$ and $\mathcal{B}(T)$ are not homeomorphic.

Problem

If you have any questions...

... I'd be happy to try to answer it and get confused.

Daniel Soukup (ELTE) Cross-like constructions and refinements Winterschool 2010 16 / 16

< 行い

∃ >

If you have any questions...

... I'd be happy to try to answer it and get confused.

Daniel Soukup (ELTE) Cross-like constructions and refinements Winterschool 2010 16 / 16

If you have any questions...

... I'd be happy to try to answer it and get confused.

Daniel Soukup (ELTE) Cross-like constructions and refinements Winterschool 2010 16 / 16